Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 28(32): 44467-44478, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33851295

RESUMO

In the current paper, copper sulfide nanotubes have been successfully synthesized via the green, simple, and effective gamma-radiolysis method without adding any capping or reducing agents. The structural and morphological characteristics of the as-prepared CuS nanotubes were investigated by X-ray diffraction (XRD), N2 adsorption-desorption measurements at 77 K, transmission electron microscopy (TEM), and ultraviolet-visible (UV-vis) spectroscopy, which all demonstrated the formation of pure CuS covellite phase with tubular morphology. The synthesized CuS nanotubes possessed not only high activity towards the reduction of both cationic (methylene blue) and anionic (Congo red) dyes in the presence of NaBH4 but also exhibited excellent reusability. In addition, the pseudo-first-order kinetic model represented the reduction of MB very well, and the value of the normalized rate constant (2.4 × 10-2 s-1 mg-1) was higher than those of other solid catalysts reported in the literature. Ultimately, CuS nanotubes were found to have a broad-spectrum microbicidal action against the common microbiota, such as Gram-positive (exemplified by Bacillus subtilis and Staphylococcus aureus), Gram-negative bacteria (exemplified by Pseudomonas aeruginosa and Escherichia coli), yeast (exemplified by Candida albicans), and plant pathogenic fungi (exemplified by Aspergillus niger).


Assuntos
Nanopartículas Metálicas , Nanotubos , Antibacterianos/farmacologia , Candida albicans , Cobre , Testes de Sensibilidade Microbiana , Sulfetos , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...